41 research outputs found

    Host Genetic Factors Predisposing to HIV-Associated Neurocognitive Disorder

    Get PDF

    Semaphorin4A causes loss of mature oligodendrocytes and demyelination in vivo

    No full text
    Abstract Background Inappropriate contact between the immune system and the central nervous system is thought to be a cause of demyelination. We previously reported the ability of the class IV semaphorin, Semaphorin4A (Sema4A), to induce apoptosis in human oligodendrocytes; however, these results have yet to be translated to an in vivo setting. Importantly, HIV-associated neurocognitive disorder remains a significant complication for patients on combined anti-retroviral therapy, with white matter damage seen on MRI. Methods Human cerebrospinal fluid and serum was assayed for Sema4A using a Sema4A-specific ELISA. Wild-type mice were injected with Sema4A via stereotaxic infusion. Data was assessed for significance using unpaired t tests, comparing the corpus callosum of PBS-injected mice versus Sema4A-injected mice. Results Here, we demonstrate elevated levels of Sema4A in the cerebrospinal fluid and serum of people with HIV infection. Furthermore, we demonstrate that direct injection of Sema4A into the corpus callosum of mice results in loss of myelin architecture and decreased myelin, concomitant with apoptosis of mature myelinating oligodendrocytes. Sema4A injection also causes increased activation of microglia. Conclusions Taken together, our data further establish Sema4A as a potentially significant mediator of demyelinating diseases and a direct connection between the immune system and oligodendrocytes

    Higher iron stores and the HFE 187C\u3eG variant delay onset of peripheral neuropathy during combination antiretroviral therapy

    Get PDF
    OBJECTIVE: People with HIV (PWH) continue to experience sensory neuropathy and neuropathic pain in the combination antiretroviral therapy (cART) era for unclear reasons. This study evaluated the role of iron in a previously reported association of iron-loading hemochromatosis (HFE) gene variants with reduced risk of neuropathy in PWH who received more neurotoxic cART, since an iron-related mechanism also might be relevant to neuropathic symptoms in PWH living in low-resource settings today. DESIGN: This time-to-event analysis addressed the impact of systemic iron levels on the rapidity of neuropathy onset in PWH who initiated cART. METHODS: Soluble transferrin receptor (sTFR), the sTFR-ferritin index of iron stores, and high-sensitivity C-reactive protein (hsCRP) levels were determined in stored baseline sera from participants of known HFE genotype from AIDS Clinical Trials Group (ACTG) Study 384, a multicenter randomized clinical trial that evaluated cART strategies. Associations with incident neuropathy were evaluated in proportional-hazards, time-to-event regression models, adjusting for potential confounders. RESULTS: Of 151 eligible participants with stored serum who were included in the original genetic study, 43 had cART-associated neuropathy; 108 had sufficient serum for analysis, including 30 neuropathy cases. Carriers of HFE variants had higher systemic iron (lower sTFR and sTFR-ferritin index) and lower hsCRP levels than non-carriers (all p\u3c0.05). Higher sTFR or iron stores, the HFE 187C\u3eG variant, and lower baseline hsCRP were associated with significantly delayed neuropathy in self-reported whites (n = 28; all p-values\u3c0.05), independent of age, CD4+ T-cell count, plasma HIV RNA, and cART regimen. CONCLUSIONS: Higher iron stores, the HFE 187C\u3eG variant, and lower hsCRP predicted delayed onset of neuropathy among self-reported white individuals initating cART. These findings require confirmation but may have implications for cART in HIV+ populations in areas with high endemic iron deficiency, especially those PWH in whom older, more neurotoxic antiretroviral drugs are occasionally still used

    A Haptoglobin Exon Copy Number Variant Associates With HIV-Associated Neurocognitive Impairment in European and African-Descent Populations.

    No full text
    A common two-exon deletion distinguishes the gene encoding the free hemoglobin capturing protein-haptoglobin (HP)-into two alleles: HP1 and HP2. To evaluate the impact of this copy number variant (CNV) on neurocognitive impairment (NCI) in people living with HIV, we imputed this variant in 432 European-descent (EUR) and 491 African-descent (AFR) participants from the CNS HIV Antiretroviral Therapy Effects Research Study using an optimized imputation pipeline and evaluated its associations with NCI. At baseline, in AFR, the HP2 allele decreased the odds of NCI (defined by a global deficit score, GDS, ⩾0.5 ; Odds Ratio, OR = 0.584, p = 0.022). However, in EUR, HP2 increased the odds (OR = 2.081, p = 0.040) of NCI suggesting a detrimental effect. These effects were extended to longitudinal analyses using repeated measurements where the protective effect of the HP2 allele in AFR became marginally significant (p = 0.054) and in EUR the detrimental effect increased in significance (p = 0.037). In EUR, the HP2 allele slightly reduced the risk of NCI over time (OR = 0.028 per allele per year, p = 0.024). Further analyses of cognitive domain-specific impairment revealed that the HP-NCI effect was based on changes in learning, speed of information processing, and verbal domains over time differing by ancestry groups. Overall, these findings suggest that these functional HP CNV alleles influence the likelihood of NCI and contribute to changes in neurocognitive function over time in people living with HIV

    European Mitochondrial DNA Haplogroups are Associated with Cerebrospinal Fluid Biomarkers of Inflammation in HIV Infection

    No full text
    BackgroundMitochondrial DNA (mtDNA) haplogroups are ancestry-related patterns of single-nucleotide polymorphisms that are associated with differential mitochondrial function in model systems, neurodegenerative diseases in HIV-negative populations, and chronic complications of HIV infection, including neurocognitive impairment. We hypothesized that mtDNA haplogroups are associated with neuroinflammation in HIV-infected adults.MethodsCNS HIV Antiretroviral Therapy Effects Research (CHARTER) is a US-based observational study of HIV-infected adults who underwent standardized neurocognitive assessments. Participants who consented to DNA collection underwent whole blood mtDNA sequencing, and a subset also underwent lumbar puncture. IL-6, IL-8, TNF-α (high-sensitivity), and IP-10 were measured in cerebrospinal fluid (CSF) by immunoassay. Multivariable regression of mtDNA haplogroups and log-transformed CSF biomarkers were stratified by genetic ancestry using whole-genome nuclear DNA genotyping (European [EA], African [AA], or Hispanic ancestry [HA]), and adjusted for age, sex, antiretroviral therapy (ART), detectable CSF HIV RNA, and CD4 nadir. A total of 384 participants had both CSF cytokine measures and genetic data (45% EA, 44% AA, 11% HA, 22% female, median age 43 years, 74% on ART).ResultsIn analyses stratified by the 3 continental ancestry groups, no haplogroups were significantly associated with the 4 biomarkers. In the subgroup of participants with undetectable plasma HIV RNA on ART, European haplogroup H participants had significantly lower CSF TNF-α (P = 0.001).ConclusionsLower CSF TNF-α may indicate lower neuroinflammation in the haplogroup H participants with well-controlled HIV on ART

    Transcriptional Link between Blood and Bone: the Stem Cell Leukemia Gene and Its +19 Stem Cell Enhancer Are Active in Bone Cells

    No full text
    Blood and vascular cells are generated during early embryogenesis from a common precursor, the hemangioblast. The stem cell leukemia gene (SCL/tal 1) encodes a basic helix-loop-helix transcription factor that is essential for the normal development of blood progenitors and blood vessels. We have previously characterized a panel of SCL enhancers including the +19 element, which directs expression to hematopoietic stem cells and endothelium. Here we demonstrate that SCL is expressed in bone primordia during embryonic development and in adult osteoblasts. Despite consistent expression in cells of the osteogenic lineage, SCL protein is not required for bone specification of embryonic stem cells. In transgenic mice, the SCL +19 core enhancer directed reporter gene expression to vascular smooth muscle and bone in addition to blood and endothelium. A 644-bp fragment containing the SCL +19 core enhancer was active in both blood and bone cell lines and was bound in vivo by a common array of Ets and GATA transcription factors. Taken together with the recent observation that a common progenitor can give rise to blood and bone cells, our results suggest that the SCL +19 enhancer targets a mesodermal progenitor capable of generating hematopoietic, vascular, and osteoblastic progeny
    corecore